2,790 research outputs found

    Nuclear electromagnetic dipole response with the Self-Consistent Green's Function formalism

    Get PDF
    Microscopic calculations of the electromagnetic response of medium-mass nuclei are now feasible thanks to the availability of realistic nuclear interactions with accurate saturation and spectroscopic properties, and the development of large-scale computing methods for many-body physics. The purpose is to compute isovector dipole electromagnetic (E1) response and related quantities, i.e. integrated dipole cross section and polarizability, and compare with data from photoabsorption and Coulomb excitation experiments. The single-particle propagator is obtained by solving the Dyson equation, where the self-energy includes correlations non-perturbatively through the Algebraic Diagrammatic Construction (ADC) method. The particle-hole (phph) polarization propagator is treated in the Dressed Random Phase Approximation (DRPA), based on an effective correlated propagator that includes some 2p2h2p2h effects but keeps the same computation scaling as the standard Hartree-Fock propagator. The E1 responses for 14,16,22,24^{14,16,22,24}O, 36,40,48,52,54,70^{36,40,48,52,54,70}Ca and 68^{68}Ni have been computed: the presence of a soft dipole mode of excitation for neutron-rich nuclei is found, and there is a fair reproduction of the low-energy part of the experimental excitation spectrum. This is reflected in a good agreement with the empirical dipole polarizability values. For a realistic interaction with an accurate reproduction of masses and radii up to medium-mass nuclei, the Self-Consistent Green's Function method provides a good description of the E1 response, especially in the part of the excitation spectrum below the Giant Dipole Resonance. The dipole polarizability is largely independent from the strategy of mapping the dressed propagator to a simplified one that is computationally manageableComment: 14 pages, 12 figure

    Spin thermoelectrics in a disordered Fermi gas

    Get PDF
    We study the connection between the spin-heat and spin-charge response in a disordered Fermi gas with spin-orbit coupling. It is shown that the ratio between the above responses can be expressed as the thermopower S=−(πkB)2Tσ′/3eσS=-(\pi k_B)^2T\sigma'/3e\sigma times a number RsR_s which depends on the strength and type of the spin-orbit couplings considered. The general results are illustrated by examining different two-dimensional electron or hole systems with different and competing spin-orbit mechanisms, and we conclude that a metallic system could prove much more efficient as a heat-to-spin than as a heat-to-charge converter.Comment: 6 pages, 1 figur

    Onsager relations in a two-dimensional electron gas with spin-orbit coupling

    Get PDF
    Theory predicts for the two-dimensional electrons gas with only Rashba spin-orbit interaction a vanishing spin Hall conductivity and at the same time a finite inverse spin Hall effect. We show how these seemingly contradictory results are compatible with the Onsager relations: the latter do hold for spin and particle (charge) currents in the two-dimensional electron gas, although (i) their form depends on the experimental setup and (ii) a vanishing bulk spin Hall conductivity does not necessarily imply a vanishing spin Hall effect. We also discuss the situation in which extrinsic spin orbit from impurities is present and the bulk spin Hall conductivity can be different from zero.Comment: Accepted versio

    Renormalization group and Ward identities in quantum liquid phases and in unconventional critical phenomena

    Full text link
    By reviewing the application of the renormalization group to different theoretical problems, we emphasize the role played by the general symmetry properties in identifying the relevant running variables describing the behavior of a given physical system. In particular, we show how the constraints due to the Ward identities, which implement the conservation laws associated with the various symmetries, help to minimize the number of independent running variables. This use of the Ward identities is examined both in the case of a stable phase and of a critical phenomenon. In the first case we consider the problems of interacting fermions and bosons. In one dimension general and specific Ward identities are sufficient to show the non-Fermi-liquid character of the interacting fermion system, and also allow to describe the crossover to a Fermi liquid above one dimension. This crossover is examined both in the absence and presence of singular interaction. On the other hand, in the case of interacting bosons in the superfluid phase, the implementation of the Ward identities provides the asymptotically exact description of the acoustic low-energy excitation spectrum, and clarifies the subtle mechanism of how this is realized below and above three dimensions. As a critical phenomenon, we discuss the disorder-driven metal-insulator transition in a disordered interacting Fermi system. In this case, through the use of Ward identities, one is able to associate all the disorder effects to renormalizations of the Landau parameters. As a consequence, the occurrence of a metal-insulator transition is described as a critical breakdown of a Fermi liquid.Comment: 47 pages, 11 figure

    Spin Hall and Edelstein effects in metallic films: from 2D to 3D

    Get PDF
    A normal metallic film sandwiched between two insulators may have strong spin-orbit coupling near the metal-insulator interfaces, even if spin-orbit coupling is negligible in the bulk of the film. In this paper we study two technologically important and deeply interconnected effects that arise from interfacial spin-orbit coupling in metallic films. The first is the spin Hall effect, whereby a charge current in the plane of the film is partially converted into an orthogonal spin current in the same plane. The second is the Edelstein effect, in which a charge current produces an in-plane, transverse spin polarization. At variance with strictly two-dimensional Rashba systems, we find that the spin Hall conductivity has a finite value even if spin-orbit interaction with impurities is neglected and "vertex corrections" are properly taken into account. Even more remarkably, such finite value becomes "universal" in a certain configuration. This is a direct consequence of the spatial dependence of spin-orbit coupling on the third dimension, perpendicular to the film plane. The non-vanishing spin Hall conductivity has a profound influence on the Edelstein effect, which we show to consist of two terms, the first with the standard form valid in a strictly two-dimensional Rashba system, and a second arising from the presence of the third dimension. Whereas the standard term is proportional to the momentum relaxation time, the new one scales with the spin relaxation time. Our results, although derived in a specific model, should be valid rather generally, whenever a spatially dependent Rashba spin-orbit coupling is present and the electron motion is not strictly two-dimensional.Comment: 23 pages, 3 figure

    Non-linear conductivity and quantum interference in disordered metals

    Full text link
    We report on a novel non-linear electric field effect in the conductivity of disordered conductors. We find that an electric field gives rise to dephasing in the particle-hole channel, which depresses the interference effects due to disorder and interaction and leads to a non-linear conductivity. This non-linear effect introduces a field dependent temperature scale TET_E and provides a microscopic mechanism for electric field scaling at the metal-insulator transition. We also study the magnetic field dependence of the non-linear conductivity and suggest possible ways to experimentally verify our predictions. These effects offer a new probe to test the role of quantum interference at the metal-insulator transition in disordered conductors.Comment: 5 pages, 3 figure

    Current-induced spin polarization and the spin Hall effect: a quasiclassical approach

    Get PDF
    The quasiclassical Green function formalism is used to describe charge and spin dynamics in the presence of spin-orbit coupling. We review the results obtained for the spin Hall effect on restricted geometries. The role of boundaries is discussed in the framework of spin diffusion equations.Comment: 10 pages, 5 figures, Submitted to Solid State Communications Special Issue on "Fundamental Phenomena in Low Dimensional Electron Systems". Special Issue Editors: Marco Polini, Michele Governale, Hermann Grabert, Vittorio Pellegrini, and Mario Tos

    High luminosity interaction region design for collisions with detector solenoid

    Full text link
    An innovatory interaction region has been recently conceived and realized on the Frascati DA{\Phi}NE lepton collider. The concept of tight focusing and small crossing angle adopted until now to achieve high luminosity in multibunch collisions has evolved towards enhanced beam focusing at the interaction point with large horizontal crossing angle, thanks to a new compensation mechanism for the beam-beam resonances. The novel configuration has been tested with a small detector without solenoidal field yielding a remarkable improvement in terms of peak as well as integrated luminosity. The high luminosity interaction region has now been modified to host a large detector with a strong solenoidal field which significantly perturbs the beam optics introducing new design challenges in terms of interaction region optics design, beam transverse coupling control and beam stay clear requirementsComment: 3 pages, 4 figures, presented to the IPAC10 conferenc

    Inverse Spin Hall Effect and Anomalous Hall Effect in a Two-Dimensional Electron Gas

    Get PDF
    We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect and the inverse spin Hall effect. However, in two-dimensional electron gases of semiconductors like GaAs, inversion symmetry is broken so that the standard arguments do not apply. We demonstrate that in the presence of a Rashba type of spin-orbit coupling (broken structural inversion symmetry) the anomalous Hall effect, the spin Hall and inverse spin Hall effect are substantially different effects. Furthermore we discuss the inverse spin Hall effect for a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit coupling; our results agree with a recent experiment.Comment: 5 page
    • …
    corecore